crossorigin="anonymous">
본문 바로가기
crossorigin="anonymous">

분류 전체보기174

데이터 라벨러의 업무 데이터 라벨링 작업은 기계 학습 및 AI 응용 프로그램에 적합하도록 원시 데이터에 주석을 달거나, 분류하거나, 태그를 달거나, 그렇지 않으면 의미 있는 라벨 및 주석을 추가하는 데 관련된 프로세스 및 활동을 말합니다. 이러한 작업은 패턴을 인식하고, 예측하고, 작업을 정확하게 수행하기 위해 기계 학습 모델 및 알고리즘을 훈련하는 데 중요합니다. 다음은 데이터 라벨링 작업과 관련된 주요 측면의 개요 10가지입니다. 1. 데이터 수집 데이터 라벨링 작업은 원시 데이터 수집으로 시작됩니다. 이 데이터는 특정 응용 프로그램에 따라 이미지, 텍스트, 오디오 녹음, 비디오, 센서 데이터 등 다양한 형태를 취할 수 있습니다. 2. 해석 지침 데이터 라벨링이 시작되기 전에 명확하고 상세한 해석지침이 수립되어야 합니다... 2023. 8. 18.
데이터 라벨링이란 데이터 라벨링이란 데이터 주석이라고도 하는 데이터 레이블링은 원시 데이터가 기계 학습 및 인공지능(AI) 애플리케이션에 사용할 수 있도록 의미 있고 관련된 태그, 범주 또는 주석을 할당하는 프로세스입니다. 데이터 레이블링의 목표는 기계 학습 알고리즘이 데이터로부터 학습하고 정확한 예측 또는 분류를 할 수 있도록 데이터에 맥락과 의미를 제공하는 것입니다. 기계 학습과 인공지능의 맥락에서, 이러한 알고리즘들이 데이터 내의 패턴과 관계를 이해하기 위해 라벨링된 데이터를 필요로 하기 때문에 데이터 라벨링은 중요합니다. 라벨링된 데이터는 이러한 알고리즘들을 위한 훈련 자료의 역할을 하며, 그들이 예시로부터 배우고 그들의 지식을 새로운, 보이지 않는 데이터로 일반화할 수 있도록 합니다. 다음은 서로 다른 도메인에서.. 2023. 8. 18.
탈모의 유형과 원인 탈모는 두피, 눈썹 및 기타 신체 부위와 같이 일반적으로 자라는 신체의 부분에서 머리카락이 부분적으로 또는 완전히 없는 것을 말합니다. 이 상태는 영향을 받는 부위에 눈에 보이는 얇아지거나 대머리가 될 수 있습니다. 탈모는 일시적일 수도 있고 영구적일 수도 있으며, 심각도는 사람마다 다를 수 있습니다. 일부 사람들은 약간의 머리카락만 가늘어지는 반면, 다른 사람들은 상당한 양의 머리카락이 빠져서 외모에 현저한 변화를 초래할 수 있습니다. 탈모 유형으로는 다음과 같다. 1. 안드로겐성 탈모증(남성/여성형 탈모증) 가장 흔한 탈모증으로, 남녀 모두에게 나타난다. 두피 상단과 헤어라인을 따라 모발이 점진적으로 가늘어지는 것이 특징입니다. 남성의 경우 모발이 움푹 패이고 정수리 부분이 대머리가 되는 경우가 많습.. 2023. 8. 17.
블랙아웃과 개선방법 블랙아웃이란 알코올로 인한 정전의 주요 원인은 기억력 강화에 중요한 뇌 해마에 대한 알코올의 파괴적인 영향으로, 알코올은 단기 기억을 장기 기억으로 전환시키는 과정을 방해하여, 도취 기간 동안 새로운 기억을 형성하고 저장할 수 없게 됩니다. 블랙아웃의 가능성과 심각도에 영향을 미치는 요인은 다음과 같습니다: 1. 알코올 섭취율 흔히 "폭음"이라고 불리는 많은 양의 알코올을 빠르게 마시는 것은 블랙아웃의 위험을 증가시킵니다. 빠른 소비는 기억을 처리하고 저장하는 뇌의 능력을 압도합니다. 2. 알코올 함량 블랙아웃은 알코올 함량이 높은 음료(예: 주류 및 주류)는 알코올 함량이 낮은 음료(예: 맥주 또는 와인)보다 블랙아웃을 일으킬 가능성이 높습니다. 3. 개인의 내성 알코올에 대한 내성이 높은 사람들은 기.. 2023. 8. 16.